Functional and structural alterations induced by copper in xanthine oxidase.
نویسندگان
چکیده
Xanthine oxidase (XO), a key enzyme in purine metabolism, produces reactive oxygen species causing vascular injuries and chronic heart failure. Here, copper's ability to alter XO activity and structure was investigated in vitro after pre-incubation of the enzyme with increasing Cu(2+) concentrations for various periods of time. The enzymatic activity was measured by following XO-catalyzed xanthine oxidation to uric acid under steady-state kinetics conditions. Structural alterations were assessed by electronic absorption, fluorescence, and circular dichroism spectroscopy. Results showed that Cu(2+) either stimulated or inhibited XO activity, depending on metal concentration and pre-incubation length, the latter also determining the inhibition type. Cu(2+)-XO complex formation was characterized by modifications in XO electronic absorption bands, intrinsic fluorescence, and alpha-helical and beta-sheet content. Apparent dissociation constant values implied high- and low-affinity Cu(2+) binding sites in the vicinity of the enzyme's reactive centers. Data indicated that Cu(2+) binding to high-affinity sites caused alterations around XO molybdenum and flavin adenine dinucleotide centers, changes in secondary structure, and moderate activity inhibition; binding to low affinity sites caused alterations around all XO reactive centers including FeS, changes in tertiary structure as reflected by alterations in spectral properties, and drastic activity inhibition. Stimulation was attributed to transient stabilization of XO optimal conformation. Results also emphasized the potential role of copper in the regulation of XO activity stemming from its binding properties.
منابع مشابه
Surgical stress induces phospholipid degradation in the intestinal brush border membrane.
BACKGROUND Surgical stress can lead to translocation of bacteria from the intestine into the systemic circulation. The intestinal brush border membrane (BBM) plays an important role in defense against such invasion by luminal bacteria and endotoxin. Our earlier work has shown the development of oxidative stress in the intestine after surgical stress and since the BBM is sensitive to free radica...
متن کاملInhibition of xanthine oxidase reduces hyperglycemia-induced oxidative stress and improves mitochondrial alterations in skeletal muscle of diabetic mice.
Reactive oxygen species (ROS) have been widely implicated in the pathogenesis of diabetes and more recently in mitochondrial alterations in skeletal muscle of diabetic mice. However, so far the exact sources of ROS in skeletal muscle have remained elusive. Aiming at better understanding the causes of mitochondrial alterations in diabetic muscle, we designed this study to characterize the sites ...
متن کاملOnion, a Potent Inhibitor of Xantine Oxidase
Onion (Allium Cepa) contains high levels of flavonoids. Although there are many studies indicating the inhibitory effects of flavonoids on xanthine oxidase, there is no report on the effect of onion on this enzyme. Therefore, in the present study, the inhibitory effects of onion on xanthine oxidase are investigated. Fresh filtered juice of onion was prepared and its inhibitory effect on guine...
متن کاملAll-trans Arachidonic acid generates reactive oxygen species via xanthine dehydrogenase/xanthine oxidase interconversion in the rat liver cytosol in vitro
We previously reported that the all-cis isomer of arachidonic acid, the most naturally occurring isoform of this fatty acid, reduced cuprous copper ion-induced conversion of xanthine dehydrogenase into its reactive oxygen species generating form, xanthine oxidase. In the present study, the effects of all-trans isomer of arachidonic acid, in comparison with cis isomer of arachidonic acid, on the...
متن کاملP-91: Vitamin E and Selenium Supplementation Affects Aldehyde Oxidase, Xanthine Dehydrogenase/Oxidase Activities In Diabetic Rat Ovaries
Background Any factor like diabetes that changes the oxidant/antioxidant balance in favor of oxidants could possibly disrupt the physiologic function of ovaries. So, we have investigated the effect of vitamin E and Se supplements on antioxidant defense in ovaries of diabetic rats with focus on Xanthine dehydrogenase/oxidase (XDH/XO) and Aldehyde oxidase (AO) activities. MaterialsAndMethods This...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biochimica et biophysica Sinica
دوره 41 7 شماره
صفحات -
تاریخ انتشار 2009